Q1.	Expand and simplify	$(3x^2 + 2)(2x + 5) - 6x(x^2 - 3)$	
		Answer	
Q2		(2x + 5)(2x - 5)(3x + 7)	

• lav i	$h/hx + a = 10x^2 + ax + 10$ where a end b ere positive integers	
	$(b)(bx + a) \equiv 10x^2 + cx + 10$ where a and b are positive integers.	
rina	the two possible values of c .	
	Answer or	
	$\sqrt{8}$	
4. (a)	Simplify fully $\frac{\sqrt{8}}{\sqrt{2}}$	
	Answer	
(b)	$\sqrt{6} \times \sqrt{5} \times \sqrt{4} \times \sqrt{3} \times \sqrt{2} \times \sqrt{1} = k \sqrt{5}$	
	Work out the value of <i>k</i> .	
	Answer	

5.	Write	$\frac{26}{\sqrt{2}} - \frac{12}{\sqrt{18}} + 2\sqrt{50}$	in the form	a√2	where a is an integer.

Answer _____

Q6.

ABC is a triangle. $AB = 3\sqrt{2}$ cm Angle $ABC = 45^{\circ}$

Not drawn accurately

The area of ABC is 12 cm²

You are given that $\sin 45^\circ = \frac{1}{\sqrt{2}}$

Nork out the length x .						

Answer _____ cm

Q7.

P (-1, 4) is a point on a circle, centre O

Work out the equation of the tangent to the circle at *P*.

Give your answer in the form	y = mx + c			

Answer _____

Q8. A and B are points on the circle with equation $x^2 + y^2 = 25$

A is (3, 4) B is a point on the y-axis.

PA and PB are tangents.

(a) Show that the coordinates of B are (0, -5)

(b) Give a reason why PA = PB

(c) P is the point (a, b) Work out the values of a and b.

a = _____

b = _____

Q9				
	Prove that	$5x(x + 6) - (3x + 5)^2$	is negative for all values of x .	
Q1				
	Prove that	5n - (2n + 3)(n + 1) i	s always negative.	

Q11		$x^2 + x + 1$ is always positive.	
Q1	2.		
·		$5x - y = 5$ $2y - x^2 = 11$	
	You must Do not use	show your working. e trial and improvement.	
		Answer	

Q13.	
Solve the simultaneous equations	
	$y = x^2 - 6x - 20$
	y = 4 - x
You must show your working.	

Q14. A, B and C are points on the circle $x^2 + y^2 = 36$ as shown.

A is on the y-axis. B is on the x-axis. M is the midpoint of AB. COM is a straight line.

(a) Show that the coordinates of A are (0, 6)

(b) Work out the coordinates of B.

Answer (_____, , ____)

(c) Show that the equation of the straight line passing through C, O and M is y = x

(d) Work out the coordinates of *C*. Give your answers in surd form.

Answer (_____, , ____)

Q15.

The diagram shows a vertical tower CD of height, h, metres. ABC is horizontal. AB = 40 metres.

Not drawn accurately

Work out the height, h , of the tower.						

Answer metres

Q16.

A Big Wheel is modelled as a circle with centre O and radius 15 metres.

The wheel turns in an anticlockwise direction.

The lowest point on the wheel is always 2 metres above horizontal ground.

1	_ \	O:		- 11	L I 1.	1	_ 1	horizontal	
	a)	(:10:2	naint ai	α that ω	nddi <i>n</i>	matrac	annva	norizontal	aralina
١,	u,	O IS a	DOILIT OF	I LIIC W	$10001, I\iota$	11101103	above	HOHZOHILAH	ui oui iu

Angle $COB = x^{\circ}$

Show that $h = 17 - 15 \cos x^{\circ}$

(b) D is a point on the wheel.

Angle DOB = 120°

Work out the height of *D* above horizontal ground.

Answer _____ metres

(c) Here is a sketch of the graph $h = 17 - 15 \cos x^{\circ}$ for one **complete** turn of the wheel. P is the highest point on the graph.

Work out the coordinates of P

Answer (______, ____)

Q17.

Work out the value of $\frac{5}{\sqrt{3}} - \sqrt{6\frac{3}{4}}$	
Give your answer in the form $\sqrt[k]{3}$	
Answer	

Q18.

Two triangular lawns are shown. Wire fencing is needed for all **five** sides.

Work out the number of rolls needed.

Answer _____